
BECAUSE THE ONE TO ALGORITHMS IS NOT
SUFFICIENT

 1

What do you get in Marathons
 One problem

 Usually 1+ week long

 Can’t be solved perfectly in reasonable time limit

 2

Examples of problems
 Travelling salesman problem (TSP)

 Elevator navigation system in hotel

 Playing (simplified) poker vs AI

 3

Common misconceptions
 You need very good algorithmic background

 You need to invest a lot of time

 You need to try a lot of different approaches to each
problem

 4

Required skills in SRMs
 Short-term concetration

(being fast, avoiding
bugs)

 Long-term memory
(remembering old
problems)

 Lots of experience in old
contests

 5

 Short-term concetration
(being fast, avoiding
bugs)

 Long-term memory
(remembering all of the
code that you wrote)

 Time managament

 Being open-minded

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2

 6

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2 1

 7

How do you solve a tough problem
 10. Understand the problem

 20. Solve the problem

 30. Analyze the results

 40. If (not dead) goto 2 1

 8

Using Hill Climbing
 Defining state

 Defining transposition function

 Defining evaluation function
current_state = init_state();

while (time_available > 0) {

 new_state = transposition(current_state);

 if (evaluate(new_state) > evaluate(current_state))

 current_state = new_state;

}

 9

Using Simulated Annealing
 Defining state

 Defining transposition function

 Defining evaluation function
current_state = init_state();

while (time_available > 0) {

 new_state = transposition(current_state);

 if (P(evaluate(new_state)-evaluate(current_state)) < rand())

 current_state = new_state;

}

 10

When you should use SA?
 Always when it works!

 11

Random hints
 Write something that works ASAP and improve it by

small steps, or at least treat it as a benchmark

 Work only when you feel you’ll be productive

 If you can, work on paper

 Visualize what you’re doing when getting lost

 Try to dissect complex problem into smaller ones

 Don’t do tedious work, when you’re feeling creative

 There’s no such thing as solving the problem

 Test often

 12

Beyond Marathons
+ Data mining / Data analysis

+ Machine vision

+ Game AI

+ Low-level optimization

+ ...

= Problem solving

 13

